The art of origami as we know it today -- folding flat sheets of paper into intricate sculptures -- was first developed in Japan around 400 years ago.
The art of origami as we know it today -- folding flat sheets of paper into intricate sculptures -- was first developed in Japan around 400 years ago. Similar paper folding techniques in China and Europe go back even further, but the Japanese turned what was usually a practical tradition into a vibrant art form. In the modern age, origami principles have inspired a surprisingly wide range of applications in science, mathematics and technology.
ThinkStock
Pop-Up Shelter
Entrepreneur Alastair Pryor has developed a line of portable compact shelters that fold out like origami tents, for use in emergencies and disasters. Weighing in at a slender 35 pounds each, the structures fold flat for easy transportation then open into 6.5 x 6.5 x 6.5 waterproof cubes.
Compact Shelters
Nano Machines
Let's get small! In 2011, biomolecular engineers at Johns Hopkins began investigating ways to employ origami techniques for self-assembling nanotech machines. The team designed mathematically precise "nets" of tiny flat plates that, when heated to a specific temperature, fold themselves into complex geometric structures -- like 12-sided dodecahedrons the size of a dust speck.
Johns Hopkins University
Microscope
Earlier this year, scientists at Stanford University unveiled the remarkable Foldscope-- an origami microscope that can be assembled from a flat sheet of paper in under 10 minutes. Pop in a tiny lens, light and battery, and the Foldscope can provide 2,000X magnification for less than $1 in materials.
FoldScope via Youtube
Garden
Designed for use in small-scale indoor farming, the Microgarden is a kind of miniature origami greenhouse for "microgreens" -- tiny edible plants that require little water or light. The greens get their moisture from a thin layer of seaweed-based gel inside the transparent plastic paper, which can be folded into a variety of shapes.
INFARM
Wheels
At this year's IEEE International Conference on Robotics and Automation (ICRA), two separate research teams debuted origami-inspired wheel systems for robots. Because the folded wheel spokes can change their shape on the fly, the diameter of the wheel itself can be altered to increase speed or torque when needed.
Harvard Microrobotics Lab/Seoul National University's BioRobotics Laboratory via Youtube
Insect Robots
Origami techniques are also useful, turns out, for mass producing coin-sized robotic insects. In 2012, engineers at Harvard developed a system for assembling microrobots inspired by origami and pop-up books. The technique uses 18 layers of material in an intricate, laser-cut design. Flexible hinges allow the microrobot to self-assemble in one movement, like a pop-up book.
Harvard Microrobotics Laboratory
Energy Storage
Researchers at the University of Maryland recently demonstrated a new method for hydrogen fuel cell storage using tiny origami-like containers. The process, dubbed HAGO (hydrogenation-assisted graphene origami), incorporates an electric field that causes the origami boxes to fold and unfold on their own. Researches hope the technique will improve fuel cell capacity in hydrogen-powered vehicles.
University of Maryland
Bracelet
By way of a composite material technology dubbed PneUI, MIT's Tangible Media Group has developed a wearable smart phone template that folds itself into a bracelet. Pneumatically actuated hinges built into the material allow the device to fold and unfold, origami-style, with a top structural layer made from silicone, fabric, wood or even -- yes -- paper.
MIT Media Lab /Tangible Media Group
Toothpaste Tube
Origami techniques have even been applied to that most intractable of modern dilemmas -- getting the last of the toothpaste out of the tube. Arizona State University design student Nicole Pannuzzo has designed an origami-inspired toothpaste tube that collapses like an accordion, leaving a flat piece of paper when extrusion is complete.
Nicole Pannuzzo
Starshade
Genuinely innovative and surprisingly pretty, NASA's prototype starshade project looks like a giant origami sunflower in space. The idea is to deploy the starshade along with space-based telescopes when studying potentially habitable exoplanets, which are necessarily close to their host sun. The starshade's "petals" -- 34 meters in diameter when unfolded-- are specifically designed to reduce glare and impede the bending of light around the edges. This allows the telescope, positioned in the shadow of the starshade, to get better images of the target plant.
NASA
Up Next
‹
1 2 3 4 5 6 7 8 9 10 11
›