Supersniffing Ants Smell Things We Can't: Page 2

A colony of Camponotus floridanus ants stays busy.


View Related Gallery »

Juergen Leibig

Gallery

Top 10 Oldest Insects, Spiders and Bugs: Photos

View Caption +

Insects and other creepy crawlies may be tiny, but their lineages are mighty, finds a new study that determined the common ancestor of mites and insects existed about 570 million years ago. The study, published in the latest issue of the journal Science, presents an evolutionary timeline that settles many longstanding uncertainties about insects and related species. It found that true insects first emerged about 479 million years ago, long before dinosaurs first walked the Earth. Co-author Karl Kjer, a Rutgers entomologist, explained that mites are arthropods, a group that's distantly related to insects. Spiders and crustaceans are also arthropods. 50-Million-Year-Old Mite Chomps Into Ant's Head

Chris Pooley (USDA, ARS, EMU)

View Caption +

Spiders such as the huntsman spider can, like mites, trace their lineages back to about 570 million years ago, according to the new study. The researchers believe that the common ancestor of mites, spiders and insects was a water-dweller. Photos: Giant Spiders to Freak You Out

Wikimedia Commons

View Caption +

Millipedes, such as the one shown here, as well as centipedes are known as myriapods. The most recent common ancestor of myriapods and crustaceans lived about 550 million years ago. Again, this "mother of many bugs" would have been a marine dweller. Kjer explained, "You can't really expect anything to live on land without plants, and plants and insects colonized land at about the same time, around 480 million years ago. So any date before that is a sea creature." Moving forward in time, the most common ancestor of millipedes and centipedes existed a little over 400 million years ago. The leggy body plan has proven to be extremely successful. Leggiest Animal Thrives Near Silicon Valley

J. Malik, Wikimedia Commons

View Caption +

"This is an early insect that evolved before insects had wings," Kjer said. Its ancestry goes back about 420 million years. The common ancestor of silverfish living today first emerged about 250 million years ago. Dinosaurs and the earliest mammals likely would have then seen silverfish very similar to the ones that are alive now. Photos: Faces of Bees, Flies and Friends

Wikimedia Commons

View Caption +

Dragonflies and damselflies have family histories that go back about 406 million years. Kjer said that such insects looked differently then, however. "For example," he said, "they had visible antennae." Their distant ancestors were among the first animals on earth to fly. Dragonfly Drone Takes Flight

Andre Karwath, Wikimedia Commons

View Caption +

"Parasitic lice are interesting, because they probably needed either feathers or fur," Kjer said. As a result, they are the relative newbies to this list. Nonetheless, the researchers believe it is possible that ancestors of today's lice were around 120 million years ago, possibly living off of dinosaurs and other creatures then. 10 Worst Epidemics

Wikimedia Commons

View Caption +

Crickets, katydids and grasshoppers had a common ancestor that lived just over 200 million years ago, and a stem lineage that goes back even further to 248 million years ago. A trivia question might be: Which came first, these insects or grass? The insects predate the grass that they now often thrive in. Nightmarish Cricket That Eats Anything Is Now Invading the US

Wikimedia Commons

View Caption +

Dinosaur Era fossils sometimes include what researchers call "roachoids," or wing impressions that were made by ancestors to today's roaches, mantids (like the praying mantis) and termites. "Some cockroaches are actually more closely related to termites than they are to other cockroaches," Kjer said, explaining that this makes tracing back their lineages somewhat confusing. He and his colleagues determined that the stem lineage goes back about 230 million years, while the earliest actual cockroach first emerged around 170 million years ago. Cockroaches: The Ultimate Survivors

Gary Alpert, Wikimedia Commons

View Caption +

Termites and cockroaches have a tightly interwoven family history. Termites similar to the ones we know today were around 138 million years ago. Now we often think of termites as pests, but they are good eats for many different animals, which back in the day would have included our primate ancestors.

Wikimedia Commons

View Caption +

Flies like houseflies that often buzz around homes belong to the order Diptera, which has a family tree that goes back 243 million years ago. The most recent common ancestor for modern flies lived about 158 million years ago, according to the study. There is little doubt that the earliest humans, and their primate predecessors, had to contend with pesky flies and all of the other insects mentioned on this list. All of these organisms are extremely hardy. The researchers determined that, in the history of our planet, there has only been one mass extinction event that had much impact on insects. It occurred 252 million years ago (the Permian mass extinction), and even it set the stage for the emergence of flies, cockroaches, termites and numerous other creepy crawlies. That Beer Smell? Designed to Attract Flies

Umberto Salvagnin, Wikimedia Commons

Related Links

How volatile a compound is refers to how easily it boils and turns into a gas to be smelled. Shorter hydrocarbon chains have fewer bonds that need to break, so they turn into gas faster. The hydrocarbons on the ants have low volatility, meaning they have long chains and low levels of the chemical evaporate at room temperature to be sniffed.

They make us squirm and we consider them pests, but they'll outlive us all! Trace recounts the things that make ants awesome.

DCI

Detecting such small doses requires a meticulous sense of smell, which may have evolved as a way for ants to navigate their complex social networks, the researchers said.

"Imagine that there are hundreds and thousands of these social insects in a colony," Ray said. "It's really critical for them to be able to tell the difference between major worker, a minor worker, a queen and different individuals within a colony, in order to be able to coordinate their social experience."

The researchers said they think low-volatility hydrocarbons fit the bill for detecting such differences, because ants interact with each other in close quarters. If the odors were strong, the ants would likely get confused, the researchers said. Ants get so close when they touch antennae and sniff each other, it is the equivalent of "shaking hands and exchanging business cards," Ray said.

"If they were using volatile odors to try to recognize their peers, it would be a real mess because these volatile odors would be all over the colony," Ray said. "It would overrun them."


33 Bizarre New Ant Species Discovered

The researchers hope this study will provide better understanding of how communication between animals evolved as a trait. In addition, knowing how insects react to hydrocarbons could lead to new ways of controling and regulating the creatures' populations, the researchers said. The C. floridanus ants in the study aren't a destructive species, but Ray said there are other harmful, invasive ants in the world.

When you're dealing with an insect that ruins a lot more than a picnic, using natural, unscented means to control the invaders could be an attractive alternative to pesticides, he added.

More from LiveScience:

Copyright 2015 LiveScience , a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Article originally appeared on LiveScience.